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Introduction

Among the several types of helicopter noise [1], that due to Blade Vortex-Interactions (BVI) isone
of the most important. BVI is the aerodynamic interaction of a rotor blade with the trailing vortex system
generated by preceding blades as shown in Fig. 1 (from reference [2]). It usually occurs during
helicopter descent, or low speed maneuvers. It is loud, impulsive in character, and tends to dominate the
other sources when it occurs, as shown experimentally (e. g. Schmitz and Yu [3]). Also, very
complicated BVI patterns arise from tilt-rotor aircraft [4]. Interactions generate the most si gnificant noise
when they are intrinsically unsteady, as when ‘the vortex is exactly parallel to the blade, or when the
vortex is nearly parallel to the blade (a vertical interaction is steady for 2-D blade). Incompressible BVIs
have been successfully treated in the past (e. g. reference [5]). For typical helicopter cases though, it
was shown in references [6] and [7] that the aerodynamics' and aeroacoustics of the ihteractions are
intrinsically transonic. In such cases the flow can be initially modeled by two-dimensional unsteady
transonic flow (fig. 2).

Unsteady transonic flow problems have been solved numerically in the past. The low frequency
approximation of the unsteady two-dimensional Transonic Small Disturbance (TSD) equation was first
solved by Ballhaus and Goorjian [8] and the LTRAN? code was created. Since then, the code has been
updated to include high frequency effects [9], viscosity [10], monotone switches [11] and second order
effects [12]. However, the acoustic waves resulting from the unsteady motion have not been adequately
studied.

Two-dimensional transonic BVI was first studied computationally in the nearand mid-field by
George and Chang [6, 7] who used the high frequency transonic small-disturbance equation, including
regions of convected vorticity. References [6, 7] also contain detailed discuséions of the background
and formulation of the transonic BVI problem. A comprehensive code, VTRAN2 was developed [13,
14] as a modification of LTRANZ to include the vortex. The vorticity is bilinearly distributed inside a
vortex core and branch cuts are introduced in the x-direction. The vortex can either follow a prescribed
path, or can be convected with the free stream. A new look at the physics of the acoustics of unsteady
transonic flow was yiven in reference [15]. In references [16-24] th: two-dimensional transonic BVI
problem is also solved using the small disturbance theory and the more complex Fuler and thin-layer
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Navier Stokes equations. Also Baeder et al. [22, 23] and Liu et al. [24] presented some near and mid
field results. At great distances from the airfoil though, the waves become very difficult to follow
because of numerical diffusion and dispersion errors.

Kirchhoff's method was introduced [14, 25-29] to extend the numerically calculated nonlinear
aerodynamic results to the linear acoustic far-field. This method uses a Green's function for the
linearized governing equation to derive a representation for the solution in terms of its values and
derivatives on a closed surface S in space, which is assumed to include all the nonlinear flow effects and
noise sources. The potential and its derivatives can be numerically calculated from a nonlinear
aerodynamié code (e. g. VTRAN2). The Kirchhoff method has the advantage of including the full
diffraction effects and eliminates the erroneous propagation of the reactive near-field.

In this paper we examine the noise due to BVIL. An existing code (VTRAN2) was enhanced to
include monotone switches and v{scous effects. The viscous effects (shock/boundary layer interaction)
on BVI noise are studied. The resulting noise because of the different types of shock-wave motion types
in the near- and the far-field is investigated and the different resulting disturbances are analyzed. The
noise mechanisms are explained physically and the relation between the noise signal and oscillating lift
and drag forces is shown. The complicated directivity patterns of BVI noise are also studied. Different

airfoil shapes are studied and classified according to the produced BVI noise.

The Numerical Method (VTRAN2)

VTRAN? is a code [13, 14} developed for analyzing the interactions of convected regions of
vorticiry- with airfoils using transonic small disturbance theory. It is based on the ADI implicit scheme of
the LTRAN2 code [8] with the inclusion of the high frequency term as described in reference [9] and the
addition of regions of convected vorticity using the cloud-in-cell and multiple branch-cut approach. The
code was modified to include viscosity [8] and monotone switches [10].

The governing equation for the unsteady transonic small-disturbance potential and the boundary
conditions can be found in various references (e. g. [30, 25)). The classical Kutta condition is satisfied
by this smalkdisturbance formulation. We are interested in cases for which the reduced frequency range
is less than 4, which is the limit for the application of the Kutta condition [31]. A finite vortex core is

used (cloud-in-cell method) for reasons of computational stability. The core has a finite square shape



limited by grid-lines and the vorticity is bilinearly distributed inside. Thus, several branch cuts (in the x-
direction) are introduced. The vortex can have a free path (convected by the flow) or a‘prescribed path
(miss distance yy = constant, vortex velocity=Uo). Details of the theoretical formulation were given by
Chang [32] and Lyrintzis [14].

For the viscosity calculations the viscous ramp method (wedge) is used. The viscous ramp model
simulates the shock/boundary layer interaction by placing a wedge-nosed ramp at the base of the shock
to obtain the reduced shock pressure rise. The surface geometry must be augmentcd by the ramp model
by adding an extra viscous term in the boundary condition. Details of the calculation of that viscous term
can be found in reference [33]. The ramp model was derived for steady-state computations. However,
it can be incorporated into unsteady computations in a quasi-steady fashion. Thus, the model is valid for -
low frequencies, and its use in high frequency problems such as BVI can only give some qualitative
‘nformation about the effect of viscosity with almost no additional CPU time. The more complicated and
CPU time-consuming lag-entrainment method which was also incorporated in our code was not used,
because it was not superior to the wedge model for unsteady cases [33].

An alternating direction imyglicit (ADI) method is used for the solution of the equation, where the
high frequency term is added in the y-sweep. An approximate factorization technique with monoione
switches [11] is used for the steady calculation, which provides a start-up solution. Special care is taken
for the conservative differentiation along the uneven mesh. |

A 213x199 mesh is used for the calculations. The computational mesh points are clustered more
densely near and in front of the airfoil and are stretched exponentially from the near airfoil region to
about 200 chords from the airfoil in the x- and 400 in the y-direction. More mesh points are added in the
y-direction for the more accurate evaluation of the normal derivatives on the Kirchhoff surface. The
VTRAN2 code was shown to agree well with other, more complex approaches including Euler and thin-
layer Navier-Stokes corﬁputations [7]. The code has a high vectorization level and the CPU time for

each two-dimensional case on a Cray-2 computer is about 4 minutes for 800 time-marching steps.

Kirchhoff's Method for the Far-Field
In the past acoustic analogy has been used for the evaluation of noise signals. This approach starts

from the calculation of the nonlinear near- and mid-field and the far-field is found from ~urface and



volume integrals of near- and mid-field flow and body surfaces. We should note that there are

substantial difficulties in including the nonlinear quadrupole term (which requires second derivatives) in

the volume imcgrals especially around shock surfaces. Thus, a lot of investigators use near-field data
only on the blade surface, which is less accurate as shock surfaces are not included in the calculation.

Kirchhoff's method includes the calculation of the nonlinear near- and mid-field with the far- f"leld
solutions found from a linear Kirchhoff formulation evaluated on a surface surrounding the nonlinear-
field. This method provides an adequate matching between the aerodynamic nonlinear near-field and the
acoustic linear far-field. The full nonlinear equations are solved in the first region (near-field), usually
numerically, and a surface integral of the solution over the control surface gives enough information for
the analytical calculation in the second region (far-field). Thé adv.antage, of the method is that non linear
effects (e. g. shock waves) are accounted for. Also, the surface integrals and the first derivatives needed
can be easily evaluated from the near-field CFD data; full diffraction and focusing effects are included
while eliminating the propagation of the reactive near-field.

The Kirchhoff equation for a moving surface was originally derived by Morgans [34]. A Green's
function approach will be used to rederive the Kirchhoff formuia in a coordinate system fixed to the
airfoil which moves with velocity Ug. The Green's funétion approach was introduced by Morino [35,
36). Farassat and Myers [37] rederived the Kirchhoff equation for an arbitrarily moving piecewise
smooth deformable surface usiné generalized derivatives. A very brief discussion of the Kirchhoff
formulation is given in the following paragraphs; for more details the reader is referred to the above
references, and also references (14, 26].

A Green's function for the linearized governing equation is used to derive a representation for the
solution in terms of its values and derivatives on a closed surface S in space, which is assumed to
include all the nonlinear flow effects and noise sources. A full three-dimensional formulation is used,
because the Green's function is simpler in this case, and because the method can be easily extended to

include spanwise variations to model three-dimensional BVI. The pressure distribution at a point

(Xg»V¥o,Zo) outside a rigid fixed surface is
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where To = {(x-x')2+[32[(y-y')2+(z-z')2]}1/2
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where " ' " denotes a point on the Kirchhoff surface, subscript o denotes the transformed values using
the well known Prandtl-Glauert transformation: |

Xo =X, Yo =By, zo=pz
n is the outward vector hormal 1o the surface S, and subscript T implies the evaluation at the retarded
time t;=t-T.

Thus, the values of the potental and its normal derivatives on an arbitrary surface around the
spanwise extent of an arbitrary flow are enough to give the far-field radiation at any arbitrary external
point.” In our work we use as a control volume a rectangular box (Fig. 3) coinciding with mesh points in
order to simplify the computation. The potential and its derivatives can be numericaily calculated from
an aerodynamic near-field code; ;hen eﬁuation (1) is used to evaluate the solution in thé far-field. Thus,
the solution is integrated on a sur‘facc in the mid-field and nonlinear effects (e. g. shock waves) in the
near-field are fully accounted for.

Since Kirchhoff's method assumes that linear equations hold outside this control surface S, the
latter must be chosen lérge enough to include the region of nonlinear behavior. However, due to
increasing mesh spacing the accuracy of the numerical solution is limited to the region immediately
surrounding the moving blade. Thus S cannot be be too large, because the numerical evaluation of the
derivatives needed (equation 1) is not accurate at large distances. Therefore, a judicious choice of S is
required for the effectiveness of the Kirchhoff method. A rectangular box-shaped surface (Fig. 3) is
used for the calculations. The VTRAN2 code is used to calculate the solutions on the surface S. The y-
limits of S for our calculations ax;: varied over a range from yg = 0.25 to 4.00 chords distance from the
airfoil. Higher Mach numbers yield higher optimum values for yg because of stronger nonlinearities in
the larger lateral extent of the flow region. The x-limits for S were also varied between 0.15 and 0.50

chords and, similarly, values of 0.25 chords upstream and downstream of the leading and trailing edges

respectively, are chosen.



Strip theory approximation ‘s used; that is, the two-dimensional VTRAN?Z solution is applied on
different segments of the blade in a stripwise manner. Blade segments ranging from two to sixteen n
aspect ratio arc used. Usually mesh limitations keep the Kirchhoff surface close enough to the blade,
where the two-dimensional strip theory solution is still valid. By making calculations with or without
the inclusion of the tip surfaces we found [27] that they have only a small effect; thus they were

neglected for most of the calculations.

Types of Unsteady Shock Motion
Tijdeman [38] showed experimentally, using an oscillating flap, that varying airfoil surface
boundary conditions can give three different types of unsteady shock motion:
Type A shock motion, where the shock at the rear of the supersonic region merely moves back and forth
with concurrent changes in strength.
Type B shock motion, where the shock moves similaﬂy to type /{, but disappeérs temporarily during the
unsteady motion.
Type C shock motion, where the supersonic region disappears, but a shock wave leaves the airfoil and
propagates forward to the far-field.
The above three types of unsteady shock motions affect heavily the characteristics (e. g. lift, drag) of all
unsteady transonic flows. The type of shock motion that occurs in a givcn situation depends on the flow
characteristics (e. g. free-stream Mach number, airfoil shape, amplitude and frequency of the unsteady
motion). These types of shock motion can even be observed in steady airfoils with severe flow
separation downstream of the shock waves. Their existence in BVI has been verified by different

experiments and calculations (e. g. Tangler's experiments [39]). .

Results and Discussion
Some mid-field calculations for BVI are performed using VIRAN2 with a refined mesh to follow
the waves of interest. Then the Kirchhoff method is used to examine the noise at the far-field. The
calculations are made in an airfoil-fixed reference frame. A more detailed discussion of the coordinate

systems ased for BVI calculations is given in reference [25].

We use a NACA 64A006 airfoil, the vortex strength was Cly =04 (Civis a nondimensional

measure of the vortex strength: Cly = 2I7/cUp) and the vortex miss-distance yo = -0.3 chords, for a fixed
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vortex path. The initial vortex position is xo =-9.51 chords and the free stream velocity is one (arbitrary
units) so the vortex passes below the airfoil leading edge at time T = 9.51. The Mach numbers of 0.875,
0.854, and 0.822 correspond to shock wave motions of types A, B, and C, respectively, as also shown
in reference [7]. The three different types of the unsteady shock motion are thus studied. For the
Kirchhoff surface (Fig. 3) we used a span of 8 ct;ords, xs = 0.25 chords and ys =35,25and 1.9
chords for the three types A, B and C, respectively. Note that a larger ys is required for higher Mach
numbers, because the y-extent of the nonlinear region of the flow increases, as expected from the scaling

laws of transoﬁic flow.
Fig. 4 shows the effect of the grid on the lift coefficient CJ(T). A standard mesh 213x119 is
compared to a finer in the y-direction mesh 213x199. The results show that the fine mesh produces a
smoother !s‘olution. Smoother solutions are also produced for the pressure coefficient at differe;t points,
especially in the far-field ursing the Kirchhoff method. Finer meshes were also tried, but the results wefe
not substantially changed. Thus, the fine mesh (213x199) will be used in the subsequent calculations.
Figs 5, 6 and 7 show the effect of viscosity in the calculations. The pressure coefficient Cp(T) at .
point P (-0.3000, -0.17478), the I:ft coefficient C|(T) and the drag coefficient Cq(T) are plotted for a
type A shock motion, for viscous and nonviscous calculations. We can see only a slight influence of the
effect of viscosity. Since viscosity is added as an extra boundary condition to model shock/boundary
layer interaction, we expect the influence to be stronger with the increase of the strength of the shock.

Thus, the effect of viscosity is lower for the types B and C (not shown) and zero for subcritical cases.

The following results include the effect of the viscosity.

Figs 8 and 9 show the Cp(T) signal of the three types of unsteady shock motion in the mid-field
(point P) from VTRAI\'IZ‘ and in the far-field (point O, r=20 chords, 8=309), as shown in Fig. 3, using
Kirchhoff's method. The signal for the higher Mach number (type A) propagates upstream slower, so it
takes longer time to arrive at the same point (Fig. 9). The signal consists of three disturbances (I, I1, III)
as also shown in referencés [25, 26]. The primary disturbance L is the main BVI noise and it originates
at the airfoil when the vortex passes below the leading edge. It1s believed to be related to the fluctuating
lift coefficient C]. The secondary disturbance II corresponds to the unsteady shock motion and depends
on thcr motion of the entire supersonic region induced by the vortex passage. It originates at the airfoil at
a later time, and depends heavily on the type of shock motion. Itis believed to be somchow related to
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the fluctuating drag coefficient C4. The time delay of disturbance II decreases with decreasing Mach
number and disappears in subcritical cases. The directivity of the two disturbances is very different as
will be shown later. The existence of the second disturbance was observed computationally by George
and Chang [7] and was also verified experimentally by Caradonna et al. [40] and Shenoy [41], and
computationally by George and Lyrintzis [25, 26], Owen and Shenoy [20] and Liu et al. [24]. For
example, in reference 41 Schlieren experiments were performed for a rotor and a second disturbance was
seen to propagate in the far-field és postulated by computational results. Disturbance I is considered
to be a standing disturbance due to the vortex passage and it is not a propagating wave. Thus this
disturbance disappears as we move from the mid-field (Fig.8) to the far-field (Fig. 9).

From Figs 8 and 9 we can see that disturbance I increases slightly with increasing Mach number.
We should also bear in mind that the definition of Cp includes division by M2, so the effect of the Mach
number is stronger than it appears in the above figures. Disturbance II exists also for type A and B
shock motions, because it is caused by the movement of the entire supersonic pocket. and seems to be
magnified as we move into the far-field. It also appears to be decreasing as we move frorp type C to
type A. However, if we measure it from peak to peak (instead of just reading the max value) it stiil
increases, but at a lower rate thar: disturbance I. Disturbance III is almost the same for the three cases,

which seems reasonable since the same vortex strength is used.

Fig. 10 shows the lift coefficient Cj (T) for types A, B and C. We can see that their shapes relate
well to the first disturbances shown in previous figures. Specifically the total Cj change for the type A
shock motion is much higher than that for type C. Thus, we can deduce that disturbance I 1S most
probably related to CJ. | |

The drag coefficient Cq will be discussed next. It is well known that in uniform subcritical
inviscid flow Cq is zero. It should be noted though, that Cd is not zero for subcritical inviscid BVI due
to the vortex acceleration. When the flow becomes supercritical, then the inviscid C{ is higher because
of the formation of supersonic pockets. This was verified by running the code for subcritical and
supercritical cases. Cd can be easily calculated in terms of the pressure distribution. Fig. 11 shows Cd
(T) for types A, Band C. The Cg signal seems to catch some part of the second disturbance whereas C)
does not. This was also detected by Liu et al. [24] for some BVI cases using a thin layer Navier Stokes
code, but is easier to see in the case of an oscillating flap [15], because there the periodicity of the motion
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is well-defined. Thus, we can conclude that the second disturbance is most probably related to the
fluctuating Cq caused mainly by the movement of the supersonic pocket.

In order to verify the above arguments we compared results from airfoils with the same thickness
distribution (i. e. same family) but different camber, "m conditions producing the same lift (i. e. different
angle of attack). Fig. 12 compares the Cp(T) BVI signals for the far-field (point O) for a NACA 1406
airfoil at an angle of attack =00, for a NACA (0.5)406 at =0.5360 and for a NACA 0006 at
a=1.0510. These conditions, with a standing vortex upstream, produce initial C]=0.229. In fact, the
entire unsteady lift C](T) for these cases is almost the same, whereas the unsteady drag C4(T) is not. All
the airfoils have a type A shock motion for these conditions. We can see from Fig. 12 that disturbance I
remains unchangéd, whereas disturbance II does change, becoming highcf as the camber ipcreases.
This agrees with our earlier discussion of lift and drag forces.

We also investigated the effect of the point of maximum camber. In Fig. 13 we compared the
Cp(T) BVI signals for the far-field (point O) for NACA airfoils with differeﬁt point of maximum camber:
1306 and 1406, for angles of attack that produce the same lift: o=0.0559 and 09, respectively. We can
see from Fig. 13 that disturbance I remains unchanged, whereas disturbance I becomes larger as the
point of maximum camber moves downstream. Thus, the 1406 airfoil has the larger disturbance II.

From Figs 12 and 13 we can conclude that disturbance I is related to the lift and disturbance I is
related to the details of the airfoil shape, which i)roduce a different supersonic pocket and thus a different
drag. Symmetric airfoils and airfoils with the point of maximum camber further upstream give a lower
value of disturbance 11, for the same lift.

A parametric study showed [26] that the vortex strength has a strong effect on the noise signal,
whereas the vortex miss distance has only a weak effect. The maximum airfoil thickness and the details
of airfoil shape were also found to be importzint. A more detailed parametric study is currently being
carried out.

The directivity of the noise signal in the far-field is very complicated, as has been shown by
experimental studies. Most of these experiments are also three-dimensional, which makes it very
difficult to compare. For exampie, in reference [42] it was shown for a model helicopter rotor that the

maximum signal can have a different dizection if the advance ratio 1L is varied.
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Directivity is studied in a vortex-fixed coordinate system keeping the distance from the vortex ry
constant (ry = 50 chords). The relationship between the angles 6 and Oy in an airfoil fixed and a vortex
fixed coordinate system is shown in Fig. 14. The Cp(t) signal for different directions is plotted in Figs
15, 16, 17 for types A, B and C shock motion, respectively (note that span = 4 chords for this case).
By inspecting the plots, we can see that disturbance‘l is getting weaker as the direction angle 6 increases
 from 00 to 900 (forward directivity). Disturbance II is getting stronger as the direction angle 0 increases
from 00 to 900 (downward directivity). The two disturbances also move closer as the angle 6 is
increased, and finally almost merge at 6 =1200. This implies a different origin. If the origin of
disturbance 1 is at the airfoil leading edge, the origin of disturbance Il is probably somewhere
downstream since this disturbance is related to the movement of the supersonic pockei.

. Tt should be noted that for an oscillating flap [15] the opposite directivity was observed:
downward for disturbance I and forward for disturbance II. Thus, it was concluded that disturbance I 1s
due to the dipole produced from oscillating lift and disturbance II is produced from oscillating drag. If
we run a subcritical case then disturbance II disappears, as expected, and the directivity of disturbance I
is downward (disturbance increases as 6 is increased from 00 to 90°). In both disturbances the
directivity observéd was not expected to be exactly the one described by a pure dipole, because of
various nonlinearities (i. e. supersonic pocket) and source noncompactness. However, a main dipole-
like behavior, as the one detected in the oscillating flap case [15], was expected. The reason that the
directivity is different for an oscillating flap and BVI seems to be related to the difference in phase
between the two disturbances. Disturbance II has a higher frequency than disturbance I and also a
different phase with respect to disturbance I. Thus, it may add or subtract differently in different
directions for various cases (i. e. diffraction). In the oscillating flap case the frequency and the phase
difference are forced better than they are in the BVI case.

Consider next the noise signals resulting from types A, B and C shock motion (Figs 15, 16 and
17, respectively). The two disturbances keep approaching each other as angle 0 is increased because of
the different disturbance origin. Angles 6 = 700 and 60° , seem to give the maximum signal, if we
measure from peak to peak, for types A and B respectively. (If we only look at the maximum absclute

value then 0 = 0° seems to produce the greatest noise). For the case of type C we can see that the entire



region between 0 = 609 and 6 = 90° produces about the same noise. For subsonic cases (not shown)
the maximum noise is 909, as it was mentioned above.

Fig. 18 shows the directivity of the BVI for a NACA 0006 airfoil. In this case the two
disturbances are closer to each other than the previous NACA 64A006 cases. If we increase 6, the two
disturbances now fall on top of each other more qixickly (0 = 909). The noise becomes maximum at
6=900, but still the noise at 8=600 and 700 is not much lower. Similar observations can be made for all
the other 4-digit airfoils tried (e. g. 1306, 1406, (0.5)406).

From the preceding discussion of BVI noise directivity we can conclude that the maximum noise
occurs at around 8 = 600 - 900 (8 = 109 - 309), and depends on both disturbances I and II, but also on
the phase difference between the two disturbances, that can be different for various airfoil shapes.

In order to isolate the effect of disturbance II in the maximum noise we compared (Fig. 19) the
Cp(T) signal at the same point (0 = 900 and vy = 50 chords) for NACA airfoils 0006, (0.5)406 and
1406 for the conditions specified before for Fig. 12 (i. e. same lift). It can be noted that the two
disturbances are almost merged at this point. We can also see that the NACA 1406 airfoil has a larger
signal, which is consistent with the fact that the same airfoil has a larger disturbance II as shown in Fig.
12.

In Fig. 20 we compared the signal for NACA airfoils with different points of maximum camber:
1306 and 1406, for angles of attack that produce the same lift: a=0.055° and 09, respectively. We
looked at the point of maximum noise: 6 = 909 and ry = 50 chords. We can see that the 1406 airfoil has
the larger signal, as expected since the same airfoil has a larger disturbance II as shown in Fig. 13.

We also ran the previously used 4-digit airfoils at subsonic Mach numbers at conditions producing
the same lift. They all produced the same BVI disturbance at all angles, as expected (no disturbance 11
was observed). In conclusion, symmetric airfoils and airfoils with a point of maximum camber farther
upstream seem to give less BVI noise for transonic conditions producing the same lift.

A direct comparison of the results obtained from the different methods (from small disturbance to
Navier Stokes equations) shows that the results are very similar [7]. In fact, the further away we move
from the airfoil surface the results tend to coincide. Thus, we expect that our conclusions will also hold

if more accurate Euler/Navier-Stokes predictions are used. Three-dimensionality will, of course,



influence the results. Some of the presented results will hold for three-dimensional cases, but only

actual three-dimensional calculations (e. g. [43]) can show that.

Conclusions

An existing numerical finite difference code VTRAN2Z was ‘modified to analyze noise due to
transonic BVIL. The two-dimensional unsteady transonic small disturbance equation was solved
numerically using ADI techniques with monotone switches, including viscous effects due to shock-
boundary interaction and the cloud-in-cell method for the simulation of the vortex. The Kirchhoff's
method was used to extend the numerically calculated two-dimensional near-field aerodynamic results to
the three-dimensional linear acoustic far-field.

The viscous effect (shock/boundary Iayer interaction) on BVI noise was studied and was found to
have only a weak influence. The effect of the three types of unsteady s»hock motion (A, B and C) was
also investigated. The unsteady pressure coefficients Cp( showed the existence of two méin
disturbances. The first one (I) is believed to be associated with the fluctuating lift coefficient (C]) and
has a strong forward directivity while the second (II) is believed to be associated with the fluctuating
drag coefficient (Cq) caused by the movement of the supersonic pocket and has a strong downward
Vdirectivity. The maximum radiation occurs at an angle 6 between 600 and 900 below the horizontal for
an airfoil-fixed coordinate system and depends on both disturbances I and II and the details of the airfoil
shape. Symmetric airfoils, and airfoils with a point of maximum camber further upstream seem to give
less BVI noise for conditions producing the same lift.

It is hoped that this work can contribute toward the better understanding of the mechanisms of
noise due to transonic BVI. In the future, we plan to study the influence of the details of airfoil shape,
especially near the leading edge. We will also include the effects of an oscillating airfoil at the same time

with a BVI that can be useful in actual helicopter cases (feathering).
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Figure Captions

Figure 1. Formulation of BVI for a four bladed rotor (from Schlinker and Amiet [2]).

Figure 2. Two-dimensional BVL

Figure 3. Kirchhoff's surface for the calculation of the far-field.

Figure 4. Effect of y-grid size on the C|(T) signal for type C

Figure 5. Effect of viscosity on the Cp(T) signal for type A; point P (x=-0.3000, y=-0.17478)
Figure 6. Effect of viscosity on the C|(T) signal for type A;

Figure 7. Effect of viscosity on the C4(T) signal for type A;

Figure 8. Comparison of the near-field BVI noise for types A, B, C; point P (x=-0.3000, y=-0.17478)

Figur® 9. Comparison of the far-field BVI noise for types A, B, C; point O (r = 20 chords, 6=300°,
span = & chords).

Figure 10. Comparison of the Cj (T) signal for BVI, types A, B, C.

Figure 11. Comparison of the Cd (T) signal BVI for types A, B, C.

Figure 12. Comparison of the far-field noise for NACA 0006 (0=1.0519), (0.5)406 (0=0.536°) and
1406 (0=00), initial C] = 0.229 in all cases; point O (r = 20 chords, 0=3009, span = 8 chords).

Figure 13. Comparison of the far-field noise for NACA 1306 (0=0.055%) and 1406 (=09), initial C] =
0.229 in both cases; point O (r = 20 chords, 6=309, span = 8 chords).

Figure 14. Relation between an airfoil fixed and a vortex fixed coordinate system.
Figure 15. BVI noise directivity for type A; ry = 50 chords, span =4 chords.
Figure 16. BVI noise directivity for type B; ry = 50 chords, span = 4 chords.
Figure 17. BVI noise directivity for type C; ry = 50 chords, span = 4 chords.

Figure 18. BVI noise directivity for NACA 0006; ry = 50 chords, span = 4 chords.

Figure 19. Comparison of the far-field noise for NACA 0006 (a=1.0519), (0.5)406 (=0.5369) and
1406 (c=09), initial Cj = 0.229 in all cases; 6 = 909, ry = 50 chords, span = 4 chords.

Ficure 20. Comparison of the far-field noise for NACA 1306 (0=0.0559) and 1406 (0.=00°),
initial C] = 0.229 in both cases; 8 = 909, ry = 50 chords, span = 4 chords.
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